Meshless method and convergence analysis for 2-dimensional Fredholm integral equation with complex factors
نویسندگان
چکیده
منابع مشابه
A Numerical Method for Solving Stochastic Volterra-Fredholm Integral Equation
In this paper, we propose a numerical method based on the generalized hat functions (GHFs) and improved hat functions (IHFs) to find numerical solutions for stochastic Volterra-Fredholm integral equation. To do so, all known and unknown functions are expanded in terms of basic functions and replaced in the original equation. The operational matrices of both basic functions are calculated and em...
متن کاملConvergence analysis of product integration method for nonlinear weakly singular Volterra-Fredholm integral equations
In this paper, we studied the numerical solution of nonlinear weakly singular Volterra-Fredholm integral equations by using the product integration method. Also, we shall study the convergence behavior of a fully discrete version of a product integration method for numerical solution of the nonlinear Volterra-Fredholm integral equations. The reliability and efficiency of the proposed scheme are...
متن کاملA meshless method for two-dimensional diffusion equation with an integral condition
This paper presents a new approach based on the meshless local Petrov–Galerkin (MLPG) and collocation methods to treat the parabolic partial differential equations with non-classical boundary conditions. In the presented method, the MLPG method is applied to the interior nodes while the meshless collocation method is applied to the nodes on the boundaries, and so the Dirichlet boundary conditio...
متن کاملDispersion analysis of the meshless local boundary integral equation (LBIE) method for the Helmholtz equation
Numerical solutions of the Helmholtz equation suffer from numerical pollution especially for the case of high wavenumbers. The major component of the numerical pollution is, as has been reported in the literature, the dispersion error which is defined as the phase difference between the numerical and the exact wave. The dispersion error for the meshless methods can be a priori determined at an ...
متن کاملCOLLOCATION METHOD FOR FREDHOLM-VOLTERRA INTEGRAL EQUATIONS WITH WEAKLY KERNELS
In this paper it is shown that the use of uniform meshes leads to optimal convergence rates provided that the analytical solutions of a particular class of Fredholm-Volterra integral equations (FVIEs) are smooth.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2016
ISSN: 0377-0427
DOI: 10.1016/j.cam.2016.02.045